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S T A B I L I T Y  O F  T R A N S O N I C  T W O - P H A S E  F L O W  

A.  V .  K a l i n i n  UDC 532.529+532.52 

The nature  of a s ingular  point in the s tabi l i ty  of one-d imens iona l  t r anson ic  flow of a v a p o r - d r o p  
mix ture  in a channel of va r i ab le  c ro s s  sect ion is cons idered  within the f r a m e w o r k  of a two-lquid 
hydrodynamiea l  model .  It is shown that  the s ingular  point in the case  of any lags of the drops  p r e -  
s e r v e s  the nature  of a saddle inherent  to homogeneous gas flow, shift ing only towards  the divergent  
par t  of the channel if the content of condensed phase is not too high. Here the t rans i t ion  of subsonic 
two-phase  flow into supersonic  flow is stable and the predominance  of drop agglomera t ion  over  
f ragmenta t ion  and the posi t ive cu rva tu re  of the channel prof i le  a re  s tabi l izing f ac to r s .  The saddle 
nature  of the s ingular i ty  is poss ib le  only if the lag of the drops is not too high in the case  of flows 
with a higher  content of condensed phase .  In the opposite case ,  the point at which the speed of sound 
is at tained loses  the nature  of a saddle point. 

A phys ica l  model  and c losed s y s t e m  of equations for  the hydrodynamics  of a c o a r s e - d i s p e r s i o n  v a p o r -  
drop mix ture ,  taking into account the ef fec ts  of re la t ive  motion and heat and m a s s  t r a n s f e r  between the phases ,  
and including seven f i r s t - o r d e r  quas i l inea r  different ia l  equations (conservat ion equations) and ten final equa-  
t ions (four equations of s tate,  four t r a n s f e r  equations,  and two c losure  equations) has been proposed  [1, 2]: 

It was p roved  that  all the c h a r a c t e r i s t i c  veloci t ies  of this  type of one-d imens iona l  nonsteady flow of a 
two-phase  med ium are  rea l ,  and that  the s y s t e m  of equations of one-d imens iona l  nonsteady flow sa t i s f ies  evolu-  
t ion conditions, and c o r r e c t l y  s ta tes  the p rob l e m with the initial  data. F r o m  this  point of view, the model of 
a two-phase  medium can be cons idered  phys ica l ly  just if ied.  

Two of the six different  c h a r a c t e r i s t i c  veloci t ies  may  change sign, pass ing  through zero .  The exis tence 
of vanishing veloci ty  cha r ac t e r i s t i c  of one -d imens iona l  nonsteady flow is due to the occu r rence  of s ingular  
points for  the s y s t e m  of equations of the co r respond ing  s teady flow [3]. Flow in the neighborhood of a s ingular  
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point is sa id  to be t r anson ic  in analogy with o rd ina ry  gasdynamics ,  though the physica l  nature  of this  
s ingular i ty  may  be en t i r e ly  different  ("pseudosonic,,) .  The nature  of a s ingular  point and the s tabi l i ty  of 
t r anson ic  two-phase  flow is not only of theore t i ca l  in te res t ,  but also has important  applications;  for  ex-  
ample ,  in calcula t ing quas i -one -d imens iona l  flow. In fact,  the exact  in tegra l  curve is rep laced  by an ap-  
p rox imat ion  in the neighborhood of the s ingular  point in the course  of numer i ca l  integrat ion of the flow 
equations and the resu l t ing  e r r o r  m a y  be cons idered  as a cor responding  dis turbance.  It is safe to say  
that ,  s ince this d i s turbance  i s  smal l ,  we may  guarantee  that  the deviation of the dis turbed solution (i.e., 
the resu l t  of numer ica l  integration) will a lso be smal l  f r o m  the exact  solution as it is continued beyond 
the neighborhood of the s ingular i ty  (outside this neighborhood this  guarantee  is supplied by the w e l l - f o r m e d -  
ness  of the p rob l em  with the init ial  data for  the given s y s t e m  of equations).  

We will b r i e f ly  set  for th  the scheme of a method developed in [3] for  studying the stabil i ty of a r b i t r a r y  
s teady flow in the neighborhood of c h a r a c t e r i s t i c  su r f aces ,  as applied to the flow of a nonequi l ibr inm two-  
phase  mix ture  of th is  type in a channel of  va r iab le  c r o s s  sect ion.  The s y s t e m  of equations given in [2l and 
solved for  the de r iva t ives ,  is wri t ten in the f o r m  

P " 2 0 o, P / - -gj 
W ;  = V2 \ ( 1 )  ( ) 0} 

m w ~ - x  -s ( 2 P' p 

w2 en , + po ., (2) 
(:r t )  P P p ~ - - - ~  (X - -  1) p~.-- '~ 

b'2 P2 

p~ O, p, w~; (3) 
Wl Wl 

p~ Q' P~ w;; (4) 
W 2 W2 

ul o, (5) 

�9 q.. (6) 
U2 ~--- p2w---- ? 

where 

n' = (?_2_, n w2, (7) 
W 2 w~ 

0 0 0 0 
01o = - ( p , / o l )  u,,O2 - (p , /p1 )  (p /p2 )  

Qn = (• - l)uxQ1 - W1Q~ -f-(•  - t)Qs; 

and Qi(i =1 . . . . .  7) are  the source  t e r m s ,  which depend on the f o r m  of the t r a n s f e r  equations and the drop 
f ragmenta t ion  (agglomeration) r a t e .  

Equations (1)-(7) imply that in a s y s t e m  of quas i -one -d imens iona l  s teady flow equations solved for  
the der iva t ives ,  

, . i = l  . . . . .  7 
~i = F~ (Xm, Y, Y ) m = t ..... t7, 

a s ingular i ty  is bas ica l ly  found only in the equation 

w~ = ~/~$, 

whe re 
/ o  

~Q = [(• --  i)Ipl] (p P2) Q~o --  (~/p!) Q11; 

• 

(s) 

(9) 

(lo) 

(11) 
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the other  der iva t ives  being expres sed  in t e r m s  of w' 1 in the usual way. 

Leaving aside the question as to the nature of the cha rac te r i s t i c  veloci ty  : l  =w2-[(P~/Pl) P/P~ t/2 
let us turn to flow in a neighborhood of the s ingular i ty  ~ =0 (i.e., : l  =0). 

We may pass f rom the space of the physical  var iables  {Xm,X }, m = l  . . . . .  17, to the space x=X(Xm, 
~,  ~), p2=p2(• ~,  r where m ~ k  and {Xm,~2,r }, rock ,  Xk=f)2, by means of the nondegenerate substi tu-  
tion I2. A continuous passage through the singular point ~ =0 is possible only if I2 s imultaneously vanishes.  
The conditions ~ =0 and ~2 =0, cons idered  jointly, de termine a 16-dimensional  surface of s ingular  points 
of quas i -one-d imens ional  steady flow equations in the 18-dimensional  space of var iables  {Xm, I2, ~}. The 
integral  curve  of this  sys tem,  passing through an isolated singular point, will consequently belong to the 
complement  (to the complete space) of the surface of s ingular  points, i .e. ,  it will be two-dimensional ,  in a 
small  neighborhood of this point. Since the point ~ =0, ~ =0 belongs to the integral  curve,  the integral  curve  
descr ibing continuous flow in a smal l  neighborhood of the s ingular  point will lie on the plane {~, ~}. This 
makes it possible to c lar i fy  the nature of the s ingular i ty  in the usual way. 

We consider  x as a pa r ame te r ,  finding 

dg~/ dx = Mx  (X,,, X'=, g, Y', if'), m = l, . . . .  i7; (13) 

d~;Idx = M~ ()r %~), m = t . . . . .  17. (14) 

We el iminate the der iva t ives  using Eqs.  (1)-(17). Since all the • are expressed  in t e r m s  of w' i =~/q~b, 

d~ldx  = N,(~2/q~, X,n, g, Y', g"),  (15) 

d~p/dz = N:(fl/gap, Xm). (16) 

hence 

d~/d~  = L , (~ ,  r ~p) (t7) 

and the nature of the sing"alarity is de termined (as usual) by the coefficients of the l inear  expansion of L i 
and L 2 in t e r m s  of ~ and ~b in a neighborhood of the s ingular  point, i .e . ,  by the eigenvalues of the matr ix  
[[aij II, where i, j = l ,  2 and where 

al~ = (OLJO~Q)o; a~l = (OL.,_lOF~)o; a12 = (0LiI0~2)o; a~_2 = (OLj&~)o. 

This may be re formula ted  for  the singular point ~ =0 (r =0). 

Le t  us consider  flow in the neighborhood of ~ =0, bear ing  in mind that the fact ~ /pO is a s m a l l p a r a m -  
e te r  and that the point ~b =w~-(p~/p~) p /p~=O l ies within a neighborhood of the point at infinity (x=.-~,  
w2=0) at which flow weakly depends on channel profile (approximate conical  drain); deviation of the two- 
phase mixture  f rom equi l ibr ium is quite low in this case and we will use l inear  t r a n s f e r  equations;  the typi -  
cal density f~ of the gas phase weakly va r i e s ,  and the gas phase,  like the liquid phase,  can be cons idered  
incompress ib le ;  f ragmentat ion and agglomeration of the drops can be d is regarded.  

With these r emarks  in mind 

Q l = ] - g ,  Q . . = ] ,  Q 3 = q ,  

Q, = g - i ,  Q~ = - f ,  Qo = - q ,  Q~ = O, 

q = 2nkrnS(T= - -  T1), t = 6mllnS(w2 -- wl), 

] = 2~xp~DlnSU+ [ P~q(T')-- 

2=p~ g =  
- - 7 - -  " + L  ; J -  " 

We will consider  that the thermophys ica l  p roper t i e s  of the gas and liquid are constant,  so that in a neighbor-  
hood of r =0, 

dw 1 
d'-~ • d--Z [~J]P'* ~- -~" (18) 
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du e,.~ . 4 ( z - - t )  pe --4- dU,,ds, [Q~c, -{- Qtfw,l 't- ~dP lQp -t- -Qi/p] -+- ~dP' ~p, -Jr- ~ ""j]u, -1- x----~ i p~ ~u,~,  

where  (the c o r r e s p o n d i n g  p r e s s u r e  de r i va t i ve s  a re  given subsc r ip t s )  

u - - i  p u - - i P  w~; 

~ ,  ~:--t 2_ ( 2 1 w , - - ] w , - -  P 7 / ) _  2 ~ [ Q n ;  p, g ; 

~ - - t  p_p_ pO t ,1 . •  1 

Pi P2 t ' i  p~ 

Pi ~ p u - - i  p 
p-]- O,, po 01o; 

r ] Peq2 T1 
�9 1 ] ; ] Peq2 " ] u ' = u - - t  UlUe Peq2--P T-~; ] P ' = - - 3 - - ~ 2  ]P="P" Peq2--P' 

x ( Y - - -  

We now ca lcu la te  

t 1 "-'--~t w; [w,=  / 
]o, --  3 Pe' fw, = we we-- ~1" 

We e l imina te  the d e r i v a t i v e s  f r o m  Eqs.  (18) and, d i s r e g a r d i n g  t e r m s  of  the o r d e r  of  02/020, we obtain  

i. + (5w, 2Wl) 
y ; - = - ~ -  - , , - I  o2 p -~ 

] 2 P2we Q{i J qlgi 
-Jr- x - -  i p~p el ~- ~ (5w2 - - 2 w I )  S - -  we - -  w p~ " 

El imina t ing  the de r iva t ives ,  we obtain pJp~  

[_2o][  ] de .q P2We 2 P~ 
"~- = T ~ t P2P P l  "}- z-------I p~p Q l l  �9 

Equat ions  (19) and (20) imp ly  that  in the  ne ighborhood  of @ =0,  fl =0 

(19) 

(20) 

whe re  

Since 

d~ __ an-Q -l- alffr 
dl I) a~ll'~ -1- ao.~ ' 

0 ( ) 
2 p 2 w e ^  __ i ,~  ] ; a l l = - - x ~ - ~ 2 n +  gtow~--2wO ] w2-wl 

2 v~ ~ ,~  ~ (5w2--2wl) / q11; 
a 1 2 -  g - - I  PeP Pl we-- wl ~ 

2 p~ 2 p%,~ 
a~ l  = z-- t P2P OI ; a22 = 74-- t ~ ~11- 

det Ilai141 = alxa~ --  a2,al~ = O, 

the c h a r a c t e r i s t i c  equat ion 

has r e a l  roo t s ,  one of  which is X 1 = 0  
by  the sign of  

I al l  - -  ~ a12 I 
a21 a~2 - -  )~ =- 0 

The s tab i l i ty  of  flow in the ne ighborhood  of  ~ =0, ~b =0 is de t e rmined  
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;k 2 = (t/2) Sp Ilaijl] = (t/2)(a1~ -}- a~.~) = (t/2p~)(5w~ --  2w~)[] -- / /(we --  w~)l. 

Since f / (w2-wt)  >0,  X 2 > 0 for  w2< (2/5)w t in the absence  of phase  t r a n s f o r m a t i o n s ,  and the t r a n s i -  
t ion of two-phase  flow through the front is s table,  though not asympto t ica l ly  s table .  

Evaporat ion is a destabi l iz ing fac tor ,  though a s imple  e s t ima te  following f r o m  Sc,~l,  f / (w2-w t) = 

6maN/i , j =2~nhr~ (Peq2-p) /p  shows that  

] --  ]/(w~ - -  w~) > 0 

only when (Peq2-p) /p>3,  i .e. ,  at a v e r y  significant deviation f r o m  equi l ibr ium.  Thus,  such two phase flows 
are  unstable  in a neighborhood of the front of a pseudosonie  wave (the s ingular  point ~ =0 of the s y s t e m  of 
quas i -one -d imens iona l  s teady flow equations) for  a slip coefficient  ~= (wl -w2) /w 1 <3/5 .  This condition is 
obviously r ea l i zed  in the neighborhood of the initial  point. 

Let  us now turn  to two-phase  flow in a neighborhood of the s ingular  point r =0(} 2 =0). The t h e r m o -  
phys ica l  p r o p e r t i e s  will be cons idered  as before ,  constant ,  though this  t ime  we wiU not a s sume  that the 
phys ica l  densi ty  of the gas phase p0 and the n u m e r i c a l  concentra t ion of drops  n are invar iant  (spatial homo-  
geneity).  We use  the to ta l  (nonlinear) t r a n s f e r  equations 

q = 2nk, n6(t -}- (3/10) Pr'/~ Re'/~)(r~ - -  T~); (21) 

] = 6n~hnh(l -~ (3/16) Ile)(w2 --  wl); (22) 

= 3 Sc~/3Re,/2) u+[peq(T2) - -P] ;  ] 2~p~Dlnh( 1 + -{5 p 

g = 2npi ~ D1 n5 (t -t- ~ / ~  - �9 

We also a s sume  that in t ransonic  two-phase  flow, 

(23) 

(24) 

0 
. . 2 . .~  Pi p 2 
w 2 ~ - 2 - 6 - -  and ~ b ~ w 2 .  

P2 p~ 
In the genera l  case ,  i .e. ,  taking into account all i r r e v e r s i b l e  p r o c e s s e s  occur r ing  in a two-phase  

mix ture ,  the equation for  the expansion coeff ic ients  d~2/dx in a neighborhood of the acoust ic  sur face  turned 
out to be highly c u m b e r s o m e .  Even a r a t h e r  s imple  e s t ima te ,  however ,  demons t r a t e s  that  k inemat ic  non- 
equi l ibr ium {particle lag, if  we are speaking of acce l e r a t ed  flow) will play the mos t  impor tant  role  in flows 
of a c o a r s e - d i s p e r s i o n  two-phase  medium.  Assuming,  for  example ,  that  (apparently,  en t i r e ly  reasonable  
cons t ra in ts )  

Re ~ 1, (P~q2 - -  p)Ip "~ 112, (p --  p~q~)/p ~ 112, 

we find f r o m  the t r a n s f e r  equations (21)-(24) that we have adopted that  

] ~ 0.lSll(to~. --  ~v~), g ~ O.09il(w~ --  w~), 

i .e . ,  conf i rmat ion  of the compara t ive ly  seconda ry  role mass  t r a n s f e r  plays in these  flows. 

On the o ther  hand, if we assume that  ( T 2 - T I ) / T l < l / 2 ,  we find f r o m  P r  =~lClp /k lUl  the e s t ima te  

q = an6kt  l0 § 3Be 1/2 5 ( T ~ - -  Tz) ~ ~nh~ h t 0 @ 3 R e t / 2  • R o t 0 @ 3 R e  t 2 
10 •  i ~ T ~ = ~ n ~  ]-~ •  w~. 

Thus,  r e so r t i ng  to Eq. (24), we find that  

q ~< 0.54/(w~ --  wl). 

Thus,  within the defined boundar ies  we have grounds for  taking into account at f i r s t  only the k ine-  
mat ic  lag of the drops,  as is often c a r r i e d  out in the l i t e r a tu re .  Flow s tabi l i ty  in the neighborhood of the 
s ingular  point ~v =0, ~ =0 is solved, as was p roved  above, for  the s ingular  point ~ =0, ~ =0 by the fo rm of 
the coeff icients  aij(i,  j =1, 2) of b i l inear  f o r m  d ~ / & p = ( a i l ~  +a~2(p)/(a2t~ +a2z~0). In this case ,  taking into 
account only k inemat ic  nonequil ibr ium, 

a l l = / [ _ ~ ( •  3he ~ t w~ ( t §  w~ are )] .  
wl wl i6 ~-3Re ) Pl w~ - -  wl ~ wl t6 ~- 6Re ' (25) 
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Thus 

wi - -  w~ [t w~ 16 + 6Be ] 

Wl [ w~ 16+6Re ( z _ i ) ( l _ ~ o ) m ]  

+~-~T (•176 -17c .~ 
, [t6 -}- 6Re l ] 

• (ms - -  w d  [~6--g--~--~ + 20) + 2( .  -- 1) 

01 W l ~  V~- w~ 48-~ 9Be 

Substituting d~/dx  in the neighborhood ~ =0, ~2 =0, we find that 

V ~ +_ !) ~q d~/dx = (~2/(~) [ w~ J + (w~/pa) Q1 - (n/p~) Q~. 

a21----- [(x + l)wdlw~, 
t . 

a, ,  = "-~ (lwl-+- g [w~ - -  (~ + i ) w d -  ~f--2plw~Y-~-'y) 

or,  taking into account only velocity relaxation, 

a,~ = - -  ( •  - -  2 w~ y ' /y .  

The sufficient stabili ty condition for the solution in the neighborhood of the singular point r =0, ~ =0, where 

d~/dT = (anQ ~- ax~q~)/(aztQ + a~2tp), 
is given by 

au + a~2 < 0. 

A singular  point may also be a stable node, stable focus, and, finally, a saddle point, such that,  as was proved 
in [3], the integral  curve passing through the singulari ty in the natural  positive direction will be a stable 
solution. However, in the case of accelerated flow with part icle lag f < 0 and, consequently, all > 0 (25). 
The sufficient stabil i ty condition can therefore  hold only when a~2 <0 (when y' > 0), i.e., stable t ransi t ion of 
two-phase nonequilibrinm flow with condensed particle lag beyond the speed of sound is possible only in a 
divergent channel. 

Using equations for  the expansion coefficients, we find that 

a n a ~  - -  ai~ a21= I2 {~21:~ (~ - -  t )( t - -  (~ [~ w' -- 

"~- u,~ i6 -~ 3Re -~ -~ i6 -~ 3Re" P~' tel - -  W~L tel te~ 

~ ~ + _ _ 6 ~ ]  
i ~ , W l - , O , ( •  i ) ( i - -m)  i + ,o~ -~,4s+gaeJ 

' () ' (~r J)[l-~-wl_w148_}_9Be ] PIP2 "~ -~- w2 t6 + 6Re ( U - -  1)(t - -  m)m 

t w , ( •  ) _t_f T 2 ( ~ - - l ~ l - 0 J )  o , 
P1~2 w:~ ' w l  

+ 16 + 3B--------~ Pl tel -- w~ w-----7-- - -  

+ 2 ''~ (''~n,~- te') (• - -  i )  [ i6  + 3ae -I- 2~ + z (~ 

w2 tl t6 + 6Re / 

32 --~ 3Re y .  2 
X 48 + 9 B e / O  - -  T 2 (u + t)  ulw~, 

where r B exp(-1/W) (relative drop production). 
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An analysis  of the coefficient  of f2 shows that it is negative for  any lags of the condensed phase (any re_l- 
a t ive  s l ips  Pl/P2 > 3 ~ / ( x + 1 )  (fi<0.419, in the case  x = 5 / 4 ) .  Here the s ingular i ty  r ea l i zed  in a divergent  chan-  
nel is obviously a saddle-point  if we do not b e a r  in mind drop production nor  the influence of the curva tu re  of 
the channel prof i le .  Drop agglomera t ion  (r which p redomina tes  o v e r  f ragmenta t ion ,  and the posi t ive c u r v a -  
ture  of the channel prof i le  (y" > 0) only s t rengthen this conclusion.  The saddle-point  nature  of the s ingular i ty  
at higher contents of condensed phase predominat ing  over  drop f ragmenta t ion  in the negative curva tu re  of the 
profi le  (i.e., the same  as in the case  of a pure  gas) is poss ib le  only for  s l ips  of not too high a magnitude.  In 
the opposi te  case  det ]I aij  I] > 0 and the na ture  of the s ingular i ty  d i f fers .  The t rans i t ion  point beyond the speed 
of sound loses  the nature of a saddle point.  
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USE OF THE PARAMETRIX METHOD FOR ESTIMATING 

EFFECTIVE ELASTIC MODULI OR RANDOMLY 

NONHOMOGENEOUS ELASTIC BODIES 

A. ]g. P~ro UDC 539.31 

The magnitude of the e las t i c i ty  t e n s o r  of a compar i son  body remains  unclar i f ied if we use a s ingu- 
l a r  approximat ion [1] to e s t ima te  the effect ive values  of the e las t i c i ty  t enso r .  Below we will use  
a p a r a m e t r i x  method [2] to de te rmine  the f i rs t  approximat ion  of the random component  of the de-  
format ion  t e n s o r  and the effect ive values  of the e las t ic i ty  t enso r ,  and will also compare  the exact  
solution for  one pa r t i cu la r  he terogeneous  and a p rev ious ly  used approximation.  

The effect ive value of the e las t i c i ty  t en s o r  ~0 is de te rmined  by 

~~ = <~><~> -t-<L'e'>, 

where k '  = ~ -  <~>; ~' = ~ -  <~ >, and the s t r e s s  t e n s o r  sa t i s f ies  the equi l ibr ium equation 

V(~e) = 0. 

The solution of the equation will be found in the fo rm of a space potential  

e" = ~  def x G (x, y) I (y) dye, 

where defx= (1/2)[~7x+ (XTx)T]; and G(x, y) is the p a r a m e t r i x  [4] of the equi l ibr ium equation, which coincides 
with the "p r inc ipa l .  po la r  par t  of G r e e n ' s  t e n s o r  of a he terogeneous  and isot ropic  medium.  

We assume that  e = g 0 + g ,  e0=const ,  and subst i tut ing Eq. (1) in the equi l ibr ium equation, we obtain the 
in tegra l  equation 

(1) 
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