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STABILITY OF TRANSONIC TWO-PHASE FLOW

A, V. Kalinin UDC 532.529+532.52

The nature of a singular point in the stability of one~dimensional transonic flow of a vapor—drop
mixture in a channel of variable cross section is considered within the framework of a two-lguid
hydrodynamical model. It is shown that the singular point in the case of any lags of the drops pre-
serves the nature of a saddle inherent to homogeneous gas flow, shifting only towards the divergent
part of the channel if the content of condensed phase is not too high. Here the transition of subsonic
two-phase flow into supersonic flow is stable and the predominance of drop agglomeration over
fragmentation and the positive curvature of the channel profile are stabilizing factors. The saddle
nature of the singularity is possible only if the lag of the drops is not too high in the case of flows
with a higher content of condensed phase. In the opposite case, the point at which the speed of sound
is attained loses the nature of a saddle point,

A physical model and closed system of equations for the hydrodynamics of a coarse~dispersion vapor—

drop mixture, taking info account the effects of relative motion and heat and mass transfer between the phases,
and including seven first-order quasilinear differential equations {(conservation equations) and ten final equa~
tions (four equations of state, four transfer equations, and two closure equations) has been proposed [1, 2L

It was proved that all the characteristic velocities of this type of one~dimensional nonsteady flow of a

two-phase medium are real, and that the system of eguations of one~dimensional nonsteady flow satisfies evolu-
tion conditions, and correctly states the problem with the initial data. From this point of view, the model of
a two-phase medium can be considered physically justified.

Two of the six different characteristic velocities may change sign, passing through zero., The existence

of vanishing velocity characteristic of one~-dimensional nonsteady flow is due to the occurrence of singular

points for the system of equations of the corresponding steady flow [3]. Flow in the neighborhood of a singular
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point is said to be transonic in analogy with ordinary gasdynamics, though the physical nature of this
singularity may be entirely different ("pseudosonic"”), The nature of a singular point and the stability of
transonic two-phase flow is not only of theoretical interest, but also has important applications; for ex~
ample, in calculating quasi-one-dimensional flow. In fact, the exact integral curve is replaced by an ap-
proximation in the neighborhood of the singular point in the course of numerical integration of the flow
equations and the resulting error may be considered as a corresponding disturbance, It is safe to say

that, since this disturbance is small, we may guarantee that the deviation of the disturbed solution (i.e.,

the result of numerical integration) will also be small from the exact solution as it is continued beyond

the neighborhood of the singularity (outside this neighborhood this guarantee is supplied by the well~formed-
ness of the problem with the initial datafor the given system of equations).

We will briefly set forth the scheme of a method developed in [3] for studying the stability of arbitrary
steady flow in the neighborhood of characteristic surfaces, as applied to the flow of a nonequilibrium two-
phase mixture of this type in a channel of variable cross section, The system of equations given in [2] and
solved for the derivatives, is written in the form '
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and Q;(i=1, ..., 7) are the source terms, which depend on the form of the transfer equations and the drop
fragmentation (agglomeration) rate.
Equations (1)-(7) imply that in a system of quasi-one-dimensional steady flow equations solved for
the derivatives,
, i=1,..,7
K =Fi(m: 9 ¥) g 47,

a singularity is basically found only in the equation
wy = Q/gp,
where
Q = [(x — D)/ps} (p/p2) Q1o — (W/p1) Qu; (10)

¢ = wi = #plp%; (11)
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b = wi — (pi/ps) plo2, (12)
the other derivatives being expressed in terms of w'; in the usual way.

Leaving aside the question as to the nature of the characteristic velocity £ =w,—{(p}/ o)) 0/ A1/
let us turn to flow in a neighborhood of the singularity ¥ =0 {i.e., £ =0).

We may pass from the space of the physical variables {Xm,x}, m=1, ..., 17, to the space x=x(Xp,
Q,9), p9=po{X > @, ¥), where m=k and {xm,Q,JJ b, m=k, X} = Pg, by means of the nondegenerate substitu-
tion 2. A continuous passage through the singular point ¥ =0 is possible only if £ simultaneously vanishes.
The conditions ¥ =0 and Q =0, considered jointly, determine a 16~-dimensional surface of singular points
of quasi-one-dimensional steady flow equations in the 18-dimensional space of variables { Xm: @, Zl)}‘. The
integral curve of this system, passing through an isolated singular point, will consequently belong to the
complement (to the complete space) of the surface of singular points, i.e., it will be two-dimensional, in a
small neighborhood of this point. Since the point € =0,% =0 belongs to the integral curve, the integral curve
describing continuous flow in a small neighborhood of the singular point will lie on the plane {2, v}. This
makes it possible to clarify the nature of the singularity in the usual way.

We consider x as a parameter, finding

dQ/dz = My (Y Yom» s y.yym="1,..,17; 13
dpldz = Myt Ym)y m =1, .. ., 4T, (14)
We eliminate the derivativesusing Egs. (1)~(17). Since all the x'; are expressed in terms of w" =0/ 0y,
dQ/dz = Ny(QI@b, toms ¥, ¥ ¥} (15)
dp/dz = Ny(Q/¢0, Ym)- (16)

hence
= L9
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and the nature of the singularity is determined (as usual) by the coefficients of the linear expansion of L;
and L, in terms of € and ¥ in a neighborhood of the singular point, i.e., by the eigenvalues of the matrix
Hain,where i, j=1, 2 and where '
ayy = (DL, /0Q); ay = (0L/0Q); @y, = (0L1/0%)0s @ae = (0L:100),.

This may be reformulated for the singular point ¢ =0 (£,=0).

Let us consider flow in the neighborhood of ¥ =0, bearing in mind that the fact p}/ o} is a small param-
eter and that the point ¥ =wi—(p]/p) p/p3=0 lies within a neighborhood of the point at infinity (x =—ro,
w,=0) at which flow weakly depends on channel profile (approximate conical drain); deviation of the two~
phase mixture from equilibrium is quite low in this case and we will use linear transfer equations; the typi~
cal density pg of the gas phase weakly varies, and the gas phase, like the liquid phase, can be considered
incompressible; fragmentation and agglomeration of the drops can be disregarded.

With these remarks in mind
h=i—8 Q@=f0C=q
Qu=¢8—1], 0= —f Q= —q @: =0,
q = 2nknd(Ty, — Ty), f = Bamynd{w, — wy),
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We will consider that the thermophysical properties of the gas and liquid are constant, so that in a neighbor-
hood of ¥ =0,

Q 0o . w
B =2 (9, + Q] + 2L (D, + Qi) (18)
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where (the corresponding pressure derivatives are given subscripts)
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We eliminate the derivatives from Egs. (18) and, disregarding terms of the order of pz/ p g, we obtain
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We now calculate
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Equations (19) and (20) imply that in the neighborhood of ¥ =0, £ =0
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Since

det lla;d= 21105; — 5181 = 0,
the characteristic equation

ay —h ap
=0
(231 Qg — A

has real roots, one of which is A;=0. The stability of flow in the neighborhood of @ =0, ¥ =0 is determined
by the sign of
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Ay = (172) Sp llagll = (1/2)(an + au) = (1/202)(5wy — 2wy)[j — fl{we — wy)l.

Since £/ (wy—wy) >0, Ay> 0 for w,< (2/5)w, in the absence of phase transformations, and the transi~
tion of two-phase flow through the front is stable, though not asymptotically stable.

Evaporation is a destabilizing factor, though a simple estimate following from Sc®1, £/ (wy—wy) =
67rn67713 i =27Tn6771 (Deqz"p)/p shows that

J—f(ws—w) >0

only when (peqz—p)/p>3, i.e., at a very significant deviation from equilibrium. Thus, such two phase flows
are unstable in a neighborhood of the front of a pseudosonic wave (the singular point §; =0 of the system of
quasi-one-dimensional steady flow equations) for a slip coefficient v=(w,;—~w,)/w; <3/5. This condition is
obviously realized in the neighborhood of the initial point.

Let us now turn to two-phase flow in a neighborhood of the singular point ¢ =0{{,=0). The thermo-~
physical properties will be considered as before, constant, though this time we will not assume that the
physical density of the gas phase pg and the numerical concentration of drops n are invariant (spatial homo-
geneity). We use the total (nonlinear) transfer equations

g = 2ak;n8(1 <+ (3/10) Pr'/® Re'/?)( Ty — Ty); (21)
f = 6unynd(l + (3/16) Re}(w, — w); (22)
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We also assume that in transonic two-phase flow,

0
wi> 3L and paud.
Py 01

In the general case, i.e., taking into account all irreversible processes occurring in a two-phase
mixture, the equation for the expansion coefficients d2/dx in a neighborhood of the acoustic surface turned
out to be highly cumbersome. Even a rather simple estimate, however, demonstrates that kinematic non~
equilibrium (particle lag, if we are speaking of accelerated flow) will play the most important role in flows
of a coarse-dispersion two-phase medium. Assuming, for example, that (apparently, entirely reasonable
constraints)

Re =1, (Pege — D)/ < U/2, (P — Peqr)/p < 1/2,
we find from the transfer equations (21)-{24) that we have adopted that
i << 0.48f/(w, — wy), § < 0.09f/(w, — wy),
i.e., confirmation of the comparatively secondary role mass transfer plays in these flows.

On the other hand, if we assume that (T,—T,)/T;=1/2, we find from Pr=n,c,,/k; ¥1 the estimate

g = nndk;
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Thus, resorting to Eq. (24), we find that
q << 0.54f (1w, — wy).

Thus, within the defined boundaries we have grounds for taking into account at first only the kine-
matic lag of the drops, as is often carried out in the literature, Flow stability in the neighborhood of the
singular point ¢ =0, @ =0 is solved, as was proved above, for the singular point ¥ =0, 2 =0 by the form of
the coefficients a;;(i, j=1, 2) of bilinear form dQ/do = (ayQ +ay,0)/ (anf + asp). In this case, taking into
account only kinematic nonequilibrium,
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Substituting d¢/dx in the neighborhood ¢ =0, € =0, we find that

doldz — (©1g) [(—“;—“—"’] + (wi/pr) Qa1 — (4/p2) Os
. 2 .
Thus
g = f(x + 1)"71]/10%,

gy = {1w1+ g [w; — (% + 1)wy] — xf — 2p _yy-}

or, taking into account only velocity relaxation,
@y =—(xlp)f—2uwyly.
The sufficient stability condition for the solution in the neighborhood of the singular point ¢ =0, @ =0, where
dQ/de = (a;;,Q + alzqa)/(azig 4 a959),
is given by
ayy - agy << 0.

A singular point may also be a stable node, stable focus, and, finally, a saddle point, such that, as was proved
in [3], the integral curve passing through the singularity in the natural positive direction will be a stable
solution. However, in the case of accelerated flow with particle lag f<0 and, consequently, a;; >0 (25).

The sufficient stability condition can therefore hold only when a,, <0 (when y' > 0), i.e., stable transition of
two-phase nonequilibrium flow with condensed particle lag beyond the speed of sound is possible only in a
divergent channel,

Using equations for the expansion coefficients, we find that

1  —
Ay18q5 — O35 By = f* {5%_ ®(x— 1)1 —0) [m ’L’_T"’s

+wziﬁ?§§f{e]+ ke [“‘ 'w2+$—fisf§ae]
Lmmm it ]
— e () et O+ 2 i e — (= X — @) o]

— o — 1)(1—m2)}+fy { 2(%—1}(1—(0)[ s
wy; 3Re

wy _{_2_"3_? wy 1+wr—w=+ﬂz 3Re
wy 16 -- 3Re PL wy—wg wy w116+3ﬁe

w1 (01 — W) 16 -+ 6Re 1
+2= :n : (“2_1)[16+3Re + 20+ 2_(u—-1)]

wz w
+2511(“+ 1) igig§:} —(x+ 1)'9{[(%—. 1)1 — @) (wy = wy) + wy]
32 »
X o 10— & 200+ ) uwi,

where =Kp exp(~ 1/W) (relative drop production).
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An analysis of the coefficient of f2 shows that it is negative for anylagsofthe condensed phase (any rel-
ative slips pi/py >3n/(%+1) (8<0.419, in the case w=5/4). Here the singularity realized in a divergent chan~
nel is obviously a saddle-point if we do not bear in mind drop production nor the influence of the curvature of
the channel profile, Drop agglomeration (#<0), which predominates over fragmentation, and the positive curva-
ture of the channel profile (y" > 0) only strengthen this conclusion, The saddle-point nature of the singularity
at higher contents of condensed phase predominating over drop fragmentation in the negative curvature of the
profile (i.e., the same as in the case of a pure gas) is possible only for slips of not too high a magnitude, In
the opposite case det || aij I > 0 and the nature of the singularity differs. The transition point beyond the speed
of sound loses the nature of a saddle point.
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USE OF THE PARAMETRIX METHOD FOR ESTIMATING
EFFECTIVE ELASTIC MODULI OR RANDOMLY
NONHOMOGENEOUS ELASTIC BODIES

A. E. Puro UDC 539.31

The magnitude of the elasticity tensor of a comparison body remains unclarified if we use a singu-
lar approximation [1] to estimate the effective values of the elasticity tensor, Below we will use

a parametrix method [2] to determine the first approximation of the random component of the de-
formation tensor and the effective values of the elasticity tensor, and will also compare the exact
solution for one particular heterogeneous and a previously used approximation.

The effective value of the elasticity tensor A’ is determined by
M<e> =<h><e> +<Me’>,
where A =A—<A>; g'=g—<&>, and the stress tensor satisfies the equilibrium equation
v(ke) = 0.

The solution of the equation will be found in the form of a space potential
¢ ={ def, G (x,y) (v} dv, , @)

where def, =(1/2)[Vx+ (%)T); and G(x, y) is the parametrix [4] of the equilibrium equation, which coincides
with the "principal® polar part of Green's tensor of a heterogeneous and isotropic medium,

We assume that &€ =gl +en, e¥=const, and substituting Eq. (1) in the equilibrium equation, we obtain the
integral equation
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